domingo, 16 de mayo de 2010

MODELO OSI




El modelo de referencia de Interconexión de Sistemas Abiertos (OSI, Open System Interconnection) fue el modelo de red descriptivo creado por la Organización Internacional para la Estandarización lanzado en 1984. Es decir, fue un marco de referencia para la definición de arquitecturas de interconexión de sistemas de comunicaciones.



(Capa 1)


Es la que se encarga de las conexiones físicas de la computadora hacia la red, tanto en lo que se refiere al medio físico como a la forma en la que se transmite la información.Capa de enlace de datos




(Capa 2)


Esta capa se ocupa del direccionamiento físico, de la topología de la red, del acceso a la red, de la notificación de errores, de la distribución ordenada de tramas y del control del flujo.Se hace un direccionamiento de los datos en la red ya sea en la distribución adecuada desde un emisor a un receptor, la notificación de errores, de la topología de la red de cualquier tipo.Capa de red




(Capa 3)


El objetivo de la capa de red es hacer que los datos lleguen desde el origen al destino, aún cuando ambos no estén conectados directamente. Los dispositivos que facilitan tal tarea se denominan encaminadores, aunque es más frecuente encontrar el nombre inglés routers y, en ocasiones enrutadores.Los routers trabajan en esta capa, aunque pueden actuar como switch de nivel 2 en determinados casos, dependiendo de la función que se le asigne. Los firewalls actúan sobre esta capa principalmente, para descartar direcciones de máquinas.En este nivel se realiza el direccionamiento lógico y la determinación de la ruta de los datos hasta su receptor final.Capa de transporte




(Capa 4)


Capa encargada de efectuar el transporte de los datos (que se encuentran dentro del paquete) de la máquina origen a la de destino, independizándolo del tipo de red física que se esté utilizando. La PDU de la capa 4 se llama Segmento. Sus protocolos son TCP y UDP el primero orientado a conexión y el otro sin conexión.Capa de sesión




(Capa 5)


Esta capa es la que se encarga de mantener y controlar el enlace establecido entre los dos computadores que están transmitiendo datos de cualquier índole.Por lo tanto, el servicio provisto por esta capa es la capacidad de asegurar que, dada una sesión establecida entre dos máquinas, la misma se pueda efectuar para las operaciones definidas de principio a fin, reanudándolas en caso de interrupción. En muchos casos, los servicios de la capa de sesión son parcial o totalmente prescindibles.Capa de presentación



(Capa 6)


El objetivo es encargarse de la representación de la información, de manera que aunque distintos equipos puedan tener diferentes representaciones internas de caracteres los datos lleguen de manera reconocible.Esta capa es la primera en trabajar más el contenido de la comunicación que el cómo se establece la misma. En ella se tratan aspectos tales como la semántica y la sintaxis de los datos transmitidos, ya que distintas computadoras pueden tener diferentes formas de manejarlas.Esta capa también permite cifrar los datos y comprimirlos. En pocas palabras es un traductor.Capa de aplicación



(Capa 7)


Ofrece a las aplicaciones la posibilidad de acceder a los servicios de las demás capas y define los protocolos que utilizan las aplicaciones para intercambiar datos, como correo electrónico (POP y SMTP), gestores de bases de datos y servidor de ficheros (FTP). Hay tantos protocolos como aplicaciones distintas y puesto que continuamente se desarrollan nuevas aplicaciones el número de protocolos crece sin parar.Cabe aclarar que el usuario normalmente no interactúa directamente con el nivel de aplicación. Suele interactuar con programas que a su vez interactúan con el nivel de aplicación pero ocultando la complejidad subyacente.

ETHERNET









Ethernet es un estándar de redes de computadoras de área local con acceso al medio por contienda CSMA/CDes Acceso Múltiple por Detección de Portadora con Detección de Colisiones"), es una técnica usada en redes Ethernet para mejorar sus prestaciones. El nombre viene del concepto físico de ether.



Ethernet define las características de cableado y señalización de nivel físico y los formatos de tramas de datos del nivel de enlace de datos del modelo OSI.La Ethernet se tomó como base para la redacción del estándar internacional IEEE 802.3. Usualmente se toman Ethernet e IEEE 802.3 como sinónimos. Ambas se diferencian en uno de los campos de la trama de datos. Las tramas Ethernet e IEEE 802.3 pueden coexistir en la misma red







ARCNET





Arquitectura de red de área local desarrollado por Datapoint Corporation que utiliza una técnica de acceso de paso de testigo como el Token Ring. La topología física es en forma de estrella mientras que la tipología lógica es en forma de anillo, utilizando cable coaxial y hubs pasivos (hasta 4 conexiones) o activos.



VelocidadLa velocidad de trasmisión rondaba los sd 2 MBits, aunque al no producirse colisiones el rendimiento era equiparable al de las redes ethernet. Empezaron a entrar en desuso en favor de Ethernet al bajar los precios de éstas.






Las velocidades de sus transmisiones son de 2.5 Mbits/s. Soporta longitudes de hasta unos 609 m (2000 pies).CaracterísticasAunque utilizan topología en bus, suele emplearse un concentrador para distribuir las estaciones de trabajo usando una configuración de estrella.El cable que usan suele ser coaxial, aunque el par trenzado es el más conveniente para cubrir distancias cortas.Usa el método de paso de testigo, aunque físicamente la red no sea en anillo. En estos casos, a cada máquina se le da un número de orden y se implementa una simulación del anillo, en la que el token utiliza dichos números de orden para guiarse.El cable utiliza un conector BNC giratorio.







TOKEN RINGT






oken Ring es una arquitectura de red desarrollada por IBM en los años 1970 con topología lógica en anillo y técnica de acceso de paso de testigo. Token Ring se recoge en el estándar IEEE 802.5. En desuso por la popularización de Ethernet; actualmente no es empleada en diseños de redes.







INSTALACIÓN ELECTRICA

Se le llama instalación eléctrica al conjunto de elementos que permiten transportar y distribuir la energía eléctrica, desde el punto de suministro hasta los equipos que la utilicen. Entre estos elementos se incluyen: tableros, interruptores, transformadores, bancos de capacitares, dispositivos, sensores, dispositivos de control local o remoto, cables, conexiones, contactos, canalizaciones, y soportes.
Las instalaciones eléctricas pueden ser abiertas (conductores visibles), aparentes (en ductos o tubos), ocultas, (dentro de paneles o falsos plafones), o ahogadas (en muros, techos o pisos) .







CONTROL DE CONDICIONES AMBIENTALES



Las condiciones ambientales de trabajo son las circunstancias físicas en las que el empleado se encuentra cuando ocupa un cargo en la organización. Es el ambiente físico que rodea al empleado mientras desempeña un cargo.
Espacio Físico


El ambiente físico comprende todos los aspectos posibles, desde el estacionamiento situado a la salida de la fábrica hasta la ubicación y el diseño del edificio, sin mencionar otros como la luminosidad y el ruido que llegan hasta el lugar de trabajo de cada trabajo.
Y en el propio lugar de trabajo otros aspectos físicos pueden ocasionar malestar y frustración. En un estudio realizado, se consideraron en orden de importancia la ventilación, la calefacción y el sistema de aire acondicionado.



Factores Ambientales:


Factores como temperatura, ruido, vibración e iluminación son aspectos que se deben de tomar en cuanta al momento de diseñar espacios adecuados para el diseño de una red entre los factores ambientales que se pueden prever podemos encontrar los siguientes:

* Estructura de lugar
* Alta tensión
* Suela
* Zona geográfica
* Humedad
* Temperatura ambiental
* Polvo
* Ruido
* Interferencias
* Distorsión
* Ecos
* Factor a medio de comunicación
* Existencia de equipos de comunicación.





NORMAS DE SEGURIDAD E HIGIENE



1. Seguridad electrica. Revise bien las conexiones electricas yu asegurese que no esten enredados y no esten al nivel del piso. Asi se evita que en caso existir algun liquido a nivel del piso, no llegue a afectar las conexiones electricas y malograr el equipo.

2. No permita que se coma ni tome liquidos cerca de la PC. No hay nada mas desagradable que tener que liimpiar teclados llenos de cafe o migas de pan. Estos afectan el funcionamiento.

3. Seguridad Informatica. Si tienes informacion sensible, ponle contraseña a tu PC. No dejes escrito en ningun lugar visible tu contraseña. Si necesitas escribirlo, hazlo en una lilbreta de notas que siempre lleves contigo.

4. Instala antivirus, firewalls, anti-spam. para evitar que ocurran ataques a tu informacion.

5. Si tienes informacion critica, comprimelos con winzip o winrar, y ponles contraseña (diferente a la de tu login).





SISTEMA DE CABLEADO ESTRUCTURADO



El sistema colectivo de cables, canalizaciones, conectores, etiquetas, espacios y demás dispositivos que deben ser instalados para establecer una infraestructura de telecomunicaciones genérica en un edificio o campus.El cableado estructurado consiste en el tendido de cables en el interior de un edificio con el propósito de implantar una red de área local. Suele tratarse de cable de par trenzado de cobre, para redes de tipo IEEE 802.3. No obstante, también puede tratarse de fibra óptica o cable coaxial.




Cableado horizontal o "de planta":


Todos los cables se concentran en el denominado armario de distribución de planta o armario de telecomunicaciones. Se trata de un bastidor donde se realizan las conexiones eléctricas(o"empalmes") de unos cables con otros.


En algunos casos, según el diseño que requiera la red, puede tratarse de un elemento activo o pasivo de comunicaciones, es decir, un hub o un switch. En cualquier caso, este armario concentra todos los cables procedentes de una misma planta. Este subsistema comprende el conjunto de medios de transmisión (cables, fibras, coaxiales, etc.) que unen los puntos de distribución de planta con el conector o conectores del puesto de trabajo.




Cableado vertical, troncal o backbone:


Después hay que interconectar todos los armarios de distribución de planta mediante otro conjunto de cables que deben atravesar verticalmente el edificio de planta a planta. Esto se hace a través de las canalizaciones existentes en el edificio. Si esto no es posible, es necesario habilitar nuevas canalizaciones, aprovechar aberturas existentes (huecos de ascensor o escaleras), o bien, utilizar la fachada del edificio (poco recomendable). En los casos donde el armario de distribución ya tiene electrónica de red, el cableado vertical cumple la función de red troncal.

viernes, 30 de abril de 2010

TECNOLOGIAS Y SISTEMAS DE COMUNICACIÓN Y ENRUTAMIENTO


Por lo general los concentradores mas utilizados son:

Hubs
Switchs

routers
repetidor




El Hub

El Hub es el dispositivo de conexión más básico, utilizado en redes locales con un número muy limitado de máquinas. En este caso, una solicitud destinada a una determinada PC de la red será enviada a todas las PC de la red. Esto reduce de manera considerable el ancho de banda y ocasiona problemas de escucha en la red. Los hubs trabajan en la primera capa del modelo OSI








El Switch

El Switch trabaja en las dos primeras capas del modelo OSI, es decir que éste distribuye los datos a cada máquina de destino. Concebido para trabajar en redes con una cantidad de máquinas ligeramente más elevado que el hub, éste elimina las eventuales colisiones de paquetes






El Router




El Router permite el uso de varias clases de direcciones IP dentro de una misma red.



De este modo permite la creación de sub redes. Es utilizado en instalaciones más grandes, donde es necesaria (especialmente por razones de seguridad y simplicidad) la creación de varias sub redes. Cuando la Internet llega por medio de un cable RJ45, es necesario utilizar un router para conectar una sub red (red local, LAN) a Internet, ya que estas dos conexiones utilizan diferentes clases de dirección IP (sin embargo es posible pero no muy aconsejado utilizar una clase A o B para una red local, estas corresponden a las clases de Internet). El router equivale a un PC gestionando varias conexiones de red (los antiguos routers eran PCs)





Los routers son compatibles con NAT, lo que permite utilizarlos para redes más o menos extensas disponiendo de gran cantidad de máquinas y poder crear “correctamente” sub redes. También tienen la función de cortafuegos (firewall) para proteger la instalación.













Repetidor





Un repetidor es un dispositivo electrónico que recibe una señal débil o de bajo nivel y la retransmite a una potencia o nivel más alto, de tal modo que se puedan cubrir distancias más largas sin degradación o con una degradación tolerable.





miércoles, 28 de abril de 2010

MEDIOS DE TRANSMISION


Los medios de comunicación utilizan alambres, cable coaxial, o incluso aire... Cada uno tiene sus ventajas y desventajas, así que hay que saber seleccionarlas para cubrir las necesidades específicas de operación.
La comunicación es la transferencia de información de un lugar a otro, mientras que la información es un patrón físico al cual se le ha asignado un significado comúnmente acordado. El patrón debe ser único -separado y distinto-, capaz de ser enviado por un transmisor y de ser detectado y entendido por un receptor. Así, la información es transmitida a través de señales eléctricas u ópticas utilizando un canal de comunicación o medio de transmisión






Cable coaxial
















Este tipo de cable consta de un conductor central fijo (axial) sobre un forro de material aislante, que después lleva una cubierta metálica en forma de malla como segundo conductor. La capa exterior evita que la radiación electromagnética o las señales de otros cables afecten la información conducida a través suyo.
El cable coaxial puede transmitir información tanto en frecuencia intermedia (IF) como en banda base. En IF, este cable es útil en aplicaciones de video, ya que resulta ser muy adecuado para enviar los canales de televisión en los sistemas de televisión por cable.
En banda base, en tanto, el coaxial fue muy utilizado en aplicaciones de datos en redes de área local (LAN), así como en redes Token Ring o Ethernet.




Los dos tipos de cables coaxiales más empleados para aplicaciones de LAN son el lOBase5 y el lOBase2. El primero es conocido generalmente como cable coaxial grueso, mientras que el segundo se conoce como cable coaxial delgado.



CABLE .-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-CARACTERÍSTICAS




10-BASE-5


Cable coaxial grueso (Ethernet grueso).

Velocidad de transmisión :

10 Mb/seg.Segmentos : máximo de 500 metros.





10-BASE-2



Cable coaxial fino (Ethernet fino).

Velocidad de transmisión :

10 Mb/seg. Segmentos : máximo de 185 metros.



Por trenzado





El cable par trenzado está compuesto por conductores de cobre aislados por material plástico y trenzados en pares.

Dicho trenzado, que en promedio abarca tres trenzas por pulgada, ayuda a disminuir la diafonía, el ruido y interferencia, para mejores resultados, el trenzado debe ser variado entre los diferentes pares.Este tipo de cables tienen la ventaja de ser económicos, flexibles y fáciles de conectar, entre otras propiedades que no presenta el coaxial en las aplicaciones de redes. No obstante, como medio de comunicación existe la desventaja de tener que usarse a distancias limitadas (menos de 100 metros), ya que la señal se va atenuando y pudiera llegar a ser imperceptible si se rebasa el límite mencionado.




Los cables de par trenzado más comúnmente usados como interfaces de capa física son los siguientes:




10BaseT (Ethernet)


100BaseTX (FastEthernet)


100BaseT4 (Fast Ethernet con 4 pares)


1000BaseT (Gigabit Ethernet)



Existen dos tipos de cable par trenzado: el cable par trenzado sin blindaje (UTP, por Unshielded Twisted Pair Cabling) y el cable par trenzado blindado (STP, por Shielded Twisted Pair Cabling).






Fibra Óptica







Este medio de comunicación utiliza la luz confinada en una fibra de vidrio para transmitir grandes cantidades de información en el orden de los gigabits por segundo. Debido a que el láser trabaja a frecuencias muy altas, entre el intervalo de la luz visible y la infrarroja, la fibra óptica es casi inmune a la interferencia y el ruido.




Para transmitir los haces de luz se utiliza una fuente de luz -como un LED (Light-Emitting Diode) o un diodo láser- y en la parte receptora se emplea un fotodiodo o fototransistor para detectar la luz emitida. También será necesario colocar un conversor de luz (óptico) a señales eléctricas al final de cada extremo.

La transmisión óptica involucra la modulación de una señal de luz usualmente apagando, encendiendo y variando la intensidad de la luz sobre una fibra muy estrecha de vidrio llamado núcleo: el diámetro de una fibra puede llegar a ser de una décima del diámetro de un cabello humano.La otra capa concéntrica de vidrio que rodea el núcleo se llama revestimiento. Después de introducir la luz dentro del núcleo, esta es reflejada por el revestimiento, lo cual ocasiona que siga una trayectoria en zig-zag a través del núcleo



Las dos formas de transmitir sobre una fibra son conocidas como transmisión en modo simple y multimodo.En el modo simple (también llamado monomodo), se transmite un haz de luz por cada fibra y, dadas sus características de transmisión, es posible que el haz se propague a decenas de kilómetros.Por ello, este tipo de fibra es muy común en enlaces de larga distancia, como la interconexión de centrales telefónicas.
En una fibra multimodo, en cambio, más de un haz de luz puede ser transmitido. Esta versión se usa para distancias más cortas y sirve para interconectar LANs entre edificios, campus, etc.La tecnología de la fibra óptica ha avanzado muy rápidamente; tanto, que hoy en día es posible incrementar la capacidad de una fibra y aumentar la distancia de propagación. Por ejemplo, los amplificadores de fibra dopada con erbio (EDFA, por Erbium-doped Fiber Amplifiers) son repetidores/amplificadores que dopan a la fibra con el metal erbio a intervalos de 50 a 100 kilómetros.

La introducción de los EDFA ha hecho posible que los sistemas de fibra óptica actuales operen a 10 Gbps.También abrieron el camino para la multicanalización por división de longitud de onda (WDM, por Wavelength Oivision Multiplexing), que es el proceso de dividir el espectro de la fibra óptica en un número de longitudes de onda sin traslaparse una con la otra. Cada longitud de onda es capaz de soportar un canal de comunicaciones de alta velocidad.
Otra tecnología innovadora en las fibras ópticas es el DWDM (WDM Denso), que soporta más de 16 longitudes de onda; por ejemplo, los sistemas.OC-48 (Optical Carrier, 2.5 Gbps) pueden soportar entre 60 y160 longitudes de onda y aún existen sistemas que soportan más de 320 longitudes de onda, lo que equivale a 320 canales de alta velocidad por fibra.
Por el momento Bell Labs está trabajando para que en un futuro cercano, se puedan transmitir más de 15,000 longitudes de onda por fibra con la tecnología "Chirped-pulse WDM", con la cual las fibras ópticas tendrán una capacidad inimaginable.Los cables de fibra óptica submarina son otro ejemplo de la gran capacidad que existe en este medio. El primer cable submarino con fibra óptica (el TAT-8) fue puesto en servicio en 1988 y utilizaba tres pares de fibra con repetidores espaciados cada 65 millas.Su capacidad es de 40,000 circuitos de voz bidireccionales. En el 2001, fue instalado otro cable trasatlántico: el AC-2, que ofrece una capacidad de 10 Gbps en 32 longitudes de onda sobre 8 pares de fibra para un total de 2.5 Terabits por segundo utilizando WDM.La fibra óptica como medio de transmisión en el área de las telecomunicaciones ha demostrado su potencialidad al cursar por éstas casi todo el tráfico de voz y datos del mundo, así como el de Internet. Pero también en el campo de la medicina la fibra óptica tiene un uso muy vasto: la laparoscopía, colposcopía y endoscopía son sólo unos ejemplos.





Los adaptadores de dispositivos están asociados a combinaciones de controles independientes y dispositivos de destino. Para un dispositivo dado, cada clase de controles móviles puede tener asociada una única clase de adaptadores de controles, y cada instancia de un control está enlazada a una instancia correspondiente de un adaptador.

Para cada tipo de dispositivo, se pueden definir las clases siguientes:
· Clase base de adaptadores de controles. Clase base de la que heredan todos los adaptadores de dispositivos.

· Adaptador de página. Adaptador asociado a la página.

· Adaptador de formularios. Adaptador de controles asociado a cada formulario de la página.

· Adaptadores de controles. Clases de adaptadores de controles que se corresponden con los controles del sistema.

· Sistema de escritura de texto. Clase que hereda de la clase HtmlTextWriter y que contiene métodos auxiliares específicos del destino.





Adaptadpres Ethernet (RJ45):

- Adaptadores PCMCIA:

En primer lugar veremos los adaptadores de red PCMCIA, estos adaptadores, son casi de uso exclusivo de ordenadores portátiles, que son los que normalmente vienen equipados con este tipo de conector.













- Adaptadores PCI:


Son dispositivos PCI, similares a las tarjetas PCI a las que ya estamos habituados. Su uso esta indicado en ordenadores de sobremesa.











- Adaptadores USB:

Para este tipo de conexiones de red no son los más habituales, puede ser usado en cualquier ordenador que disponga de puertos USB, sea sobremesa o portátil.












Adaptadores Wifi:

Respecto a los adaptadores inalámbricos que podemos instalar, también pueden ser de varios tipos y la elección dependerá de nuestras necesidades y de las características de nuestro equipo, pudiendo elegir entre adaptadores PCMCIA, miniPCI, PCI o USB.
- Adaptadores PCMCIA:

En primer lugar veremos los adaptadores de red inalámbrica PCMCIA, estos adaptadores son casi de uso exclusivo de ordenadores portátiles, que como comentamos anteriormente, son los que vienen equipados con este tipo de conector.








-Adaptadores miniPCI:

Este tipo de adaptador, son los usados habitualmente por los portátiles y los routers inalámbricos, es un pequeño circuito similar a la memoria de los ordenadores portátiles.








- Adaptadores PCI:

Son dispositivos PCI, similares a las tarjetas de red que hemos visto anteriormente y que llevan una pequeña antena para recepción-emisión de la señal. Su uso esta indicado en ordenadores de sobremesa.











- Adaptadores USB:

Son los más habituales, por su precio y facilidad para instalarlo pudiendo ser usado en cualquier ordenador que disponga de puertos USB, sea sobremesa o portátil, incluso es posible adaptarlos a cualquier aparato electrónico que disponga de ese tipo de conexión.


viernes, 16 de abril de 2010

NUEVAS TECNOLOGIAS

Inalámbricas:





Bluetooth o Wi-Fi





Bluetooth es una tecnología que se usa para conectar pequeños dispositivos entre sí. Su capacidad de enviar o recibir datos (lo que se denomina ancho de banda) es pequeña y su alcance apenas sobrepasa los diez metros. Se usa, sobre todo, para telefonía, manos libres o pequeños aparatos de bolsillo.




La tecnología que se utiliza para las redes domésticas es la Wi-Fi, o Wireless Fidelity, también llamada WLan o IEEE 802.11. Aunque todos los dispositivos Wi-Fi son compatibles entre sí, es importante saber que hay dos estándares: el 802.11b y el 802.11g. El primero opera a menos velocidad, aunque es más barato. No tiene sentido adquirir un emisor rápido para conectarlo a un receptor lento, así que los estándares deben coincidir en todos los elementos de la red.








TECNOLOGIA PLC





La tecnología Power Line Communications (PLC) hace posible la transmisión de voz y datos a través de la línea eléctrica doméstica o de baja tensión. Esta tecnología hace posible que conectando un módem PLC a cualquier enchufe de nuestra casa, podamos acceder a Internet a una velocidad entre 2 y 20 Mbps, aunque en las pruebas que ha realizado la empresa española DS2 han llegado a alcanzar los 45 Mbps de subida. La compañía eléctrica Endesa, que cuenta con una Web dedicada al PLC, ha realizado dos pruebas pilotos y ahora está haciendo una prueba masiva en Zaragoza con 1.000 usuarios.





TECNOLOGIA TELEFONICA



Las tecnologías inalámbricas han tenido mucho auge y desarrollo en estos últimos años. Una de las que ha tenido nu gran desarrollo ha sido la telefonía celular.
Desde sus inicios a finales de los 70 ha revolucionado enormemente las actividades que realizamos diariamente. Los teléfonos celulares se han convertido en una herramienta primordial para la gente común y de negocios; las ahce sentir más seguras y las ahce más productivas.A pesar de que la telefonía celular fue concebida estrictamente para la voz, la tecnología celular de hoy es capaz de brindar otro tipo de servicios, como datos, audio y video con algunas limitaciones. Sin embargo, la telefonía inalámbrica del mañana hará posible aplicaciones que requieran un mayor consumo de ancho de banda.



Generaciones de la telefonía inalámbrica.


--Primera generación (1G)


La 1G de la teleonía móvil hizo su aparición en 1979 y se caracterizó por se analógica y estrictamente para voz. La calidad de los enlaces era muy baja, tenían baja velocidad (2400 bauds).


--Segunda generación (2G)


La 2G arribó hasta 1990 y a diferencia de la primera se caracterizó por ser digital.EL sistema 2G utiliza protocolos de codificación más sofisticados y se emplea en los sistemas de telefonía celular actuales. Los protocolos empleados en los sistemas 2G soportan velocidades de información más altas por voz, pero limitados en comunicación de datos. Se pueden ofrecer servicios auxiliares, como datos, fax y SMS (Short Message Service). La mayoría de los protocolos de 2G ofrecen diferentes niveles de encripción. En Estados Unidos y otros países se le conoce a 2G como PCS (Personal Communication Services).


--Generación 2.5 G


Muchos de los proveedores de servicios de telecomunicaciones se moverán a las redes 2.5G antes de entrar masivamente a la 3. La tecnología 2.5G es más rápida, y más económica para actualizar a 3G.


--Tercera generación 3G.

La 3G se caracteriza por contener a la convergencia de voz y datos con acceso inalámbrico a Internet; en otras palabras, es apta para aplicaciones multimedia y altas transmisiones de datos.Los protocolos empleados en los sistemas 3G soportan altas velocidades de información y están enfocados para apliacciones más allá de la voz como audio (mp3), video en movimiento, videoconferencia y acceso rápido a Internet, sólo por nombrar algunos. Se espera que las redes 3G empiecen a operar en el 2001 en Japón, por NTT DoCoMo; en Europa y parte de Asia en el 2002, posteriormente en Estados Unidos y otros países.Asimismo, en un futuro próximo los sistemas 3G alcanzarán velocidades de hasta 384 kbps, permitiendo una movilidad total a usuarios, viajando a 120 kilómetros por hora en ambientes exteriores.

TOPOLOGÍA DE RED DE AREA LOCAL


El término topología se refiere a la forma en que está diseñada la red, bien físicamente (rigiéndose de algunas características en su hardware) o bien lógicamente (basándose en las características internas de su software).



Topología en Malla

En una topología en malla, cada dispositivo tiene un enlace punto a punto y dedicado con cualquier otro dispositivo. El término dedicado significa que el enlace conduce el tráfico únicaniente entre los dos dispositivos que conecta.










Topología en Estrella


En la topología en estrella cada dispositivo solamente tiene un enlace punto a punto dedicado con el controlador central, habitualmente llamado concentrador. Los dispositivos no están directamente enlazados entre sí.A diferencia de la topología en malla, la topología en estrella no permite el tráfico directo de dispositivos. El controlador actúa como un intercambiador: si un dispositivo quiere enviar datos a otro, envía los datos al controlador, que los retransmite al dispositivo final.













Topología en Árbol


La topología en árbol es una variante de la de estrella. Como en la estrella, los nodos del árbol están conectados a un concentrador central que controla el tráfico de la red. Sin embargo, no todos los dispositivos se conectan directamente al concentrador central. La mayoría de los dispositivos se conectan a un concentrador secundario que, a su vez, se conecta al concentrador central.










Topología en Bus

Una topología de bus es multipunto. Un cable largo actúa como una red troncal que conecta todos los dispositivos en la red.







Topología en Anillo

En una topología en anillo cada dispositivo tiene una línea de conexión dedicada y punto a punto solamente con los dos dispositivos que están a sus lados. La señal pasa a lo largo del anillo en una dirección, o de dispositivo a dispositivo, hasta que alcanza su destino. Cada dispositivo del anillo incorpora un repetidor.







LOS PROTOCOLOS DE COMUNICACION




El Protocolo de red o también Protocolo de Comunicación es el conjunto de reglas usadas por computadoras para comunicarse unas con otras a través de una red. Un protocolo es una convención o estándar que controla o permite la conexión, comunicación, y transferencia de datos entre dos puntos finales.Permiten el flujo de información entre computadoras distintas que manejan lenguajes distintos, por ejemplo, dos computadores conectados en la misma red pero con protocolos diferentes no podrían comunicarse jamás, para ello, es necesario que ambas "hablen" el mismo idioma, por tal sentido, el protocolo TCP/IP fue creado para las comunicaciones en Internet, para que cualquier computador se conecte a Internet, es necesario que tenga instalado este protocolo de comunicaciónPueden estar implementados bien en hardware (tarjetas de red), software (drivers), o una combinación de ambos.Según la clasificación OSI, la comunicación de varios dispositivos informaticos (ETD) se puede estudiar dividiéndola en 7 niveles, que son expuestos desde su nivel más alto hasta el más bajo

jueves, 18 de marzo de 2010

MODO DE TRANSMISIÓN DE DATOS


La transmisión analógica y digital




En las redes de ordenadores, los datos a intercambiar siempre están disponibles en forma de señal digital. No obstante, para su transmisión podemos optar por la utilización de señales digitales o analógicas. La elección no será, casi nunca, una decisión del usuario, sino que vendrá determinada por el medio de transmisión a emplear.No todos los medios de transmisión permiten señales analógicas ni todos permiten señales digitales. Como la naturaleza de nuestros datos será siempre digital, es necesario un proceso previo que adecue estos datos a la señal a transmitir. A continuación examinaremos los 2 casos posibles:



Información digital y transmisión de señal digital

Para obtener la secuencia que compone la señal digital a partir de los datos digitales se efectúa un proceso denominado codificación. Existen multitud de métodos de codificación, mencionaremos seguidamente los más usuales.


NRZ (No Return to Zero): Es el método que empleamos para representar la evolución de una señal digital en un cronograma. Cada nivel lógico 0 y 1 toma un valor distinto de tensión.


NRZI (No Return to Zero Inverted): La señal no cambia si se transmite un uno, y se invierte si se transmite un cero.


RZ (Return to Zero): Si el bit es uno, la primera mitad de la celda estará a uno. La señal vale cero en cualquier otro caso.

Manchester: Los valores lógicos no se representan como niveles de la señal, sino como transiciones en mitad de la celda de bit. Un flanco de bajada representa un cero y un flanco de subida un uno.

Manchester diferencial: Manteniendo las transiciones realizadas en el método Manchester, en este método introduce la codificación diferencial. Al comienzo del intervalo de bit, la señal se invierte si se transmite un cero, y no cambia si se transmite un uno.


Información digital y transmisión de señal analógica

Al proceso por el cual obtenemos una señal analógica a partir de unos datos digitales se le denomina modulación. Esta señal la transmitimos y el receptor debe realizar el proceso contrario, denominado demodulación para recuperar la información. El módem es el encargado de realizar dicho proceso. Algunos esquemas simples de modulación son:



FSK (Modulación por desplazamiento de la frecuencia): Se modifica la frecuencia de la portadora según el valor de bit a transmitir.

ASK (modulación por desplazamiento de la amplitud): En esta técnica no se modifica la frecuencia de la portadora sino su amplitud. Los dos valores binarios se representan mediante diferentes niveles de amplitud de esta señal.


PSK (Modulación por desplazamiento de fase): La frecuencia y la amplitud se mantiene constantes y se varía la fase de la portadora para representar los niveles uno y cero con distintos ángulos de fase.


Banda ancha por cable



Cuando se habla de banda ancha se hace
referencia a un sistema de conexión a Internet y de transmisión de datos. Actualmente, la banda ancha es uno de las mejores opciones ya que permite disfrutar una velocidad de datos mucho más superior que lo que sucede con el acceso vía dial-up. Además, la banda ancha también permite mantener un permanente acceso a Internet sin interrumpir la conexión telefónica ya que recurren a módems externos.





El funcionamiento de la banda ancha se basa en la utilización de tecnologías DSL y de cable módems. Sin embargo, en la actualidad, la tecnología Wi/Fi, que no necesita cableado, está creciendo más y más, especialmente para suplir a aquellos usuarios que viven en áreas sin las tecnologías o capacidades necesarias para establecer complejos sistemas de cable módem.
La fibra óptica, el material utilizado para la transmisión de datos en banda ancha, ha demostrado ser mucho más eficiente que el cobre y mucho más eficaz en relación a la velocidad posible adquirida.


Definición de Cablemódem


Un cable módem es un tipo especial de módem diseñado para modular la señal de datos sobre una infraestructura de televisión por cable. Cuando se habla de Internet por cable, se hace referencia a la distribución del servicio de Internet a través de esta infraestructura de telecomunicación. El cablemódem es utilizado principalmente para distribuir acceso a Internet de banda ancha aprovechando el ancho de banda que no se utiliza en la red de TV por cable.Los abonados al servicio en un mismo vecindario comparten el ancho de banda proporcionado por una única línea de cable coaxial, esto puede limitar la velocidad de conexión dependiendo de cuanta gente esté usando el servicio al mismo tiempo.

http://www.alegsa.com.ar/Dic/cablemodem.php





MODOS DE TRANSMISIÓN


Una transmisión de datos tiene que ser controlada por medio del tiempo, para que el equipo receptor conozca en que momento se puede esperar que una transferencia tenga lugar.
Hay dos principios de transmisión para hacer esto posible:





Transmisión Síncrona.
Transmisión Asíncrona.






TRANSMISIÓN SÍNCRONA



La transmisión síncrona se hace con un ritmo que se genera centralizadamente en la red y es el mismo para el emisor como para el receptor. La información útil es transmitida entre dos grupos, denominados genéricamente delimitadores.
Algunas de las características de la transmisión síncrona son:

Los bloques a ser transmitidos tienen un tamaño que oscila entre 128 y 1,024 bytes.
La señal de sincronismo en el extremo fuente, puede ser generada por el equipo terminal de datos o por el módem.
El rendimiento de la transmisión síncrona, cuando se transmiten bloques de 1,024 bytes y se usan no más de 10 bytes de cabecera y terminación, supera el 99 por 100.



Ventajas y desventajas de la transmisión síncrona:


Posee un alto rendimiento en la transmisión.

Los equipamientos necesarios son de tecnología más completa y de costos más altos.
Son especialmente aptos para ser usados en transmisiones de altas velocidades (iguales o mayores a 1,200 baudios de velocidad de modulación).
El flujo de datos es más regular.






TRANSMISIÓN ASÍNCRONA


En la transmisión asíncrona es el emisor el que decide cuando se envía el mensaje de datos a través de la red. En una red asíncrona el receptor por lo consiguiente no sabe exactamente cuando recibirá un mensaje. Por lo tanto cada mensaje debe contener, aparte del mensaje en sí, una información sobre cuando empieza el mensaje y cuando termina, de manera que el receptor conocerá lo que tiene que decodificar.
En el procedimiento asíncrono, cada carácter a ser transmitido es delimitado por un bit denominado de cabecera o de arranque, y uno o dos bits denominados de terminación o de parada.
El bit de arranque tiene dos funciones de sincronización de los relojes del transmisor y del receptor.
El bit o bits de parada, se usan para separar un carácter del siguiente.

Normalmente, a continuación de los bits de información se acostumbra agregar un bit de paridad (par o impar).


Algunas de las características de la transmisión asíncrona son:

Los equipos terminales que funcionan en modo asíncrono, se denominan también “terminales en modo carácter”.
La transmisión asíncrona también se le denomina arrítmica o de “start-stop”.
La transmisión asíncrona es usada en velocidades de modulación de hasta 1,200 baudios.
El rendimiento de usar un bit de arranque y dos de parada, en una señal que use código de 7 bits más uno de paridad (8 bits sobre 11 transmitidos) es del 72 por 100.



Ventajas y desventajas del modo asíncrono:


En caso de errores se pierde siempre una cantidad pequeña de caracteres, pues éstos se sincronizan y se transmiten de uno en uno.
Bajo rendimiento de transmisión, dada la proporción de bits útiles y de bits de sincronismo, que hay que transmitir por cada carácter.
Es un procedimiento que permite el uso de equipamiento más económico y de tecnología menos sofisticada.
Se adecua más fácilmente en aplicaciones, donde el flujo transmitido es más irregular.





VENTAJAS Y APLICACIONES DE UNA RED COMO PROPUESTA


VENTAJAS

Compartir informacion más rápidamente sin la necesidad de transportarlos por medios portátiles como disquetes, discos duros, CDs, etc, ademas de que ahorras tiempo al evitar hacerlo de esa forma. Otra ventaja que permita la comunicacion a larga distancia igualmente que compartir archivos con personas que se encuentran lejos del punto donde tu te encuentras.



APLICACIONES


Comunicacion, utilizada ya sea como la utilizacion de medios como el Chat, las redes sociales, la telefonia celular, etc., y compartir archivos con una o mas personas en todo el mundo, la transmision de datos como por ejemplo correos o depositos bancarios, etc.



lunes, 15 de marzo de 2010



El sistema operativo de red: es el programa(software) que permite el control de la red y reside en el servidor. Ejemplos de estos sistemas operativos de red son: NetWare, LAN Manager, OS/2, LANtastic y Appletalk.
Un Sistema Operativo es un
programa que actúa como intermediario entre el usuario y el hardware del computador y su propósito es proporcionar el entorno en el cual el usuario pueda ejecutar programas. Entonces, el objetivo principal de un Sistema Operativo es, lograr que el sistema de computación se use de manera cómoda, y el objetivo secundario es que el hardware del computador se emplee de manera eficiente. 4.- Un Sistema Operativo es un conjunto de programas que controla la ejecución de programas de aplicación y actúa como una interfaz entre el usuario y el hardware de una computadora, esto es, un Sistema Operativo explota y administra los recursos de hardware de la computadora con el objeto de proporcionar un conjunto de servicios a los usuarios del sistema.



SISTEMA OPERATIVO LOCAL



El sistema operativo local se encarga de controlar los dispositivos y demas software a nivel de la computadora que este siendo utilizado.La diferencia con un SO de red es que debe controlar a todas las computadoras conectadas en red, asi mismo deberá entenderse con el SO local.


SOFTWARE DE RED


Software,
programas de computadoras. Son las instrucciones responsables de que el hardware (la máquina) realice su tarea. Como concepto general, el software puede dividirse en varias categorías basadas en el tipo de trabajo realizado. Las dos categorías primarias de software son los sistemas operativos (software del sistema), que controlan los trabajos del ordenador o computadora, y el software de aplicación, que dirige las distintas tareas para las que se utilizan las computadoras. Por lo tanto, el software del sistema procesa tareas tan esenciales, aunque a menudo invisibles, como el mantenimiento de los archivos del disco y la administración de la pantalla, mientras que el software de aplicación lleva a cabo tareas de tratamiento de textos, gestión de bases de datos y similares. Constituyen dos categorías separadas el software de red, en el se incluyen programas relacionados con la interconexión de equipos informáticos, es decir, programas necesarios para que las redes de computadoras funcionen. Entre otras cosas, los programas de red hacen posible la comunicación entre las computadoras, permiten compartir recursos (software y hardware) y ayudan a controlar la seguridad de dichos recursos.

martes, 9 de marzo de 2010










Concentrador



El término ‘concentrador’ se refiere a un repetidor de puerto múltiple. Este tipo de dispositivo simplemente transmite toda la información que recibe, para que todos los dispositivos conectados a sus puertos reciban dicha información HUB.

Los concentradores repiten toda la información que reciben y se pueden utilizar para extender la red. No obstante, debido a esta acción, puede ser que se envíe gran cantidad de tráfico innecesario a todos los dispositivos de la red. Los concentradores transmiten el tráfico a la red sin tener en cuenta la supuesta dirección; los PCs a los que se envían los paquetes, utilizan la información de la dirección de cada paquete para averiguar qué paquetes están destinados a ellos mismos. La repetición de la información en una red pequeña no representa un problema, pero para una red más grande y más utilizada, puede ser que sea necesario un componente de operación en red (como un conmutador), para que ayude a reducir la cantidad de tráfico generado innecesario.








Routeador





Un routeador es un dispositivo de propósito general diseñado para segmentar la red, con la idea de limitar tráfico de brodcast y proporcionar seguridad, control y redundancia entre dominios individuales de brodcast, también puede dar servicio de firewall y un acceso económico a una WAN.
Las funciones primarias de un ruteador son:· Segmentar la red dentro de dominios individuales de brodcast.· Suministrar un envio inteligente de paquetes.· Soportar rutas redundantes en la red.





MODEM





El módem (el nombre proviene de MOduladorDEMoluador) es un instrumento mediante el cual los ordenadores pueden hablar en la red telefónica normal.El módem de quien transmite, una vez recibidos los datos del ordenador, los transforma (los modula) de bits a señales auditivas y las envía por la línea telefónica. Por su parte, el ordenador receptor efectúa la operación inversa, transformando (demodulando) los sonidos recibidos en bits.









Puentes (Bridges)




Son elementos inteligentes, constituidos como nodos de la red, que conectan entre sí dos subredes, transmitiendo de una a otra el tráfico generado no local. Al distinguir los tráficos locales y no locales, estos elementos disminuyen el mínimo total de paquetes circulando por la red por lo que, en general, habrá menos colisiones y resultará más difícil llegar a la congestión de la red.Se encargan de filtrar el tráfico que pasa de una a otra red según la dirección de destino y una tabla que relaciona las direcciones y la red en que se encuentran las estaciones asignadas. Las redes conectadas a través de bridge aparentan ser una única red, ya que realizan su función transparentemente; es decir, las estaciones no necesitan conocer la existencia de estos dispositivos, ni siquiera si una estación pertenece a uno u otro segmento.

Se distinguen dos tipos de bridge:



*Locales: sirven para enlazar directamente dos redes físicamente cercanas.



*Remotos o de área extensa: se conectan en parejas, enlazando dos o más redes locales, formando una red de área extensa, a través de líneas telefónicas.





Puertos inalámbricos









Las conexiones en este tipo de puertos se hacen, sin necesidad de cables, a través de la conexión entre un emisor y un receptor utilizando ondas electromagnéticas. Si la frecuencia de la onda, usada en la conexión, se encuentra en el espectro de infrarrojos se denomina puerto infrarrojo. Si la frecuencia usada en la conexión es la usual en las radio frecuencias entonces sería un puerto Bluetooth.La ventaja de esta última conexión es que el emisor y el receptor no tienen porque estar orientados el uno con respecto al otro para que se establezca la conexión. Esto no ocurre con el puerto de infrarrojos. En este caso los dispositivos tienen que "verse" mutuamente, y no se deb interponer ningún objeto entre ambos ya que se interrumpiría la conexión.